Rational Number Project

Initial Fraction Ideas	Materials		
Lesson 18: Overview	∞ Fraction Circles for students		
Students look at the numerical relationship between the	and teacher		
numerators and denominators of fractions equal to $\frac{1}{2}$.	\sim Student Page A		
There uses this number methods to determine if a size	\sim Student Pages A and B from		
They use this number pattern to determine if a given	Lesson 11		
fraction is less than or equal to $\frac{1}{2}$.			

Teaching Actions

Warm Up

Draw two pictures for each fraction to show its two different names.

 $\frac{7}{4}$ $\frac{3}{2}$ $\frac{8}{3}$

Large Group Introduction

- 1. Ask students to take out the fraction circles and find several equivalences for $\frac{1}{2}$ (use the black circle as unit).
- Record them on chart. 2.

Fractions equal to $\frac{1}{2}$ $\frac{2}{4}$, $\frac{3}{6}$, $\frac{4}{8}$, $\frac{5}{10}$, $\frac{6}{12}$

Tell students that you can add to the list without 3. using circles:

 $\frac{7}{14}$, $\frac{8}{16}$, $\frac{9}{18}$, $\frac{10}{20}$, $\frac{25}{50}$, $\frac{50}{100}$, $\frac{150}{300}$

4. Ask students to look at the numerator and denominator of each fraction equal to $\frac{1}{2}$ and ask them if they can see any pattern or relationship between numerator and denominator that's the same

Comments

Students with a quantitative sense of fractions use $\frac{1}{2}$ as a reference point to estimate fraction sums and differences.

Ex: $\frac{3}{6} + \frac{1}{3}$

" $\frac{3}{6}$ equals $\frac{1}{2}$, and $\frac{1}{3}$ is less than $\frac{1}{2}$, so the sum is greater than $\frac{1}{2}$ but less than 1."

Notice the role of fraction equivalence for $\frac{1}{2}$ in estimation as well as in the same numerator but different denominator strategy [Lessons 6 & 7]

At this point we won't look explicitly at examples like $\frac{2}{5}$ but if students mention examples like this one acknowledge that it does equal $\frac{1}{2}$.

Teaching Actions

Comments

for each fraction.

- 5. Help students verbalize that in each case, the denominator is double (twice) the numerator.
- 6. Give students these fractions with parts missing and have them make them into fractions equal to $1\frac{1}{2}$

 $\frac{11}{24}, \frac{11}{30}, \frac{100}{28}, \frac{100}{28}$

7. Ask students to show these fractions with their circular pieces.

 $\frac{1}{4} \quad \frac{2}{6} \quad \frac{3}{8} \quad \frac{4}{10} \quad \frac{5}{12}$

Ask if they are greater or less than $\frac{1}{2}$. Have them tell you how far away from $\frac{1}{2}$ each amount is.

- 8. Without using the pieces, ask them to tell you numerators that would make each fraction greater than $\frac{1}{2}$.
- 9. Present these fractions to students. Ask them if they are $>\frac{1}{2}$, $<\frac{1}{2}$, or $=\frac{1}{2}$. Use fraction circles if needed. Have them verbalize their reasoning.

3	5	4	6	9	15	2
10	12	6	10	20	18	2

Small Group/Partner Work

10. Student Page A provides practice. You may want to use Student Pages A and B from Lesson 11 again. Now have students see if they can solve problems using number patterns for $\frac{1}{2}$.

Teaching Actions	Comments
Wrap Up	
11. End the class with this problem. Ask students how they can use equivalence for $\frac{1}{2}$ and other order ideas to estimate the following problem: $\frac{14}{30} + \frac{5}{10}$ Is $\frac{19}{40}$ a reasonable answer? Is the sum greater than 1 or less than 1?	

Translations

- ∞ Written symbols to verbal
- ∞ Real world to verbal

Draw two pictures for each fraction to show its two different names.

$$\frac{7}{4}$$
 $\frac{2}{3}$ $\frac{8}{3}$

Comparing to 1-half

1. Margo and Jose shared a couple of large pizzas. Margo ate $\frac{5}{8}$ of a pizza. Jose ate $\frac{6}{16}$ of a pizza. Who ate more? Explain how you know.

2. Imagine that you shared your bag of mini doughnuts with your sister. You ate $\frac{3}{5}$ of the bag while your sister ate $\frac{4}{10}$ of the bag. Who ate more? Explain how you know.

3. Chou-Mei ran 2 and $\frac{7}{8}$ miles. Her sister ran 2 and $\frac{3}{10}$ miles. Who ran the shorter distance? Explain how you know.

4. Circle the larger fraction in each pair.

a)
$$\frac{2}{3}$$
 $\frac{1}{5}$ b) $\frac{9}{12}$ $\frac{6}{15}$ c) $\frac{5}{9}$ $\frac{3}{7}$ d) $\frac{1}{2}$ $\frac{3}{4}$ e) $\frac{3}{5}$ $\frac{4}{9}$ f) $\frac{11}{17}$ $\frac{3}{9}$ g) $\frac{10}{22}$ $\frac{4}{5}$ h) $\frac{3}{6}$ $\frac{2}{9}$ i) $\frac{8}{13}$ $\frac{6}{16}$