Rating | Views | Title | Posted Date | Contributor | Common Core Standards | Grade Levels | Resource Type | |
---|---|---|---|---|---|---|---|
Wile E. Coyote - Modeling with Quadratic Functions (Writing project)![]() This is a creative writing project (dealing with Wile E. Coyote and the Road Runner) dealing with modeling falling bodies with quadratics and solving quadratic equations. An optional aspect is to have students estimate the instantaneous rate of change. |
8/2/2016 |
Trey Cox
|
HSF-IF.B.5 HSF-IF.B.6 HSF-IF.C.7c HSF-IF.C.7a HSF-BF.A.1c HSF-LE.A.3 MP.1 MP.3 MP.4 MP.5 MP.6 | HS | Activity | ||
Average Athletics![]() One of the measures of central tendency is the mean/average. Many do not know much about the average other than it is calculated by "adding up all of the numbers and dividing by the number of numbers". This activity is designed to help students get a conceptual understanding of what an average is and not just how to calculate a numerical value. |
8/2/2016 |
Trey Cox
|
6.SP.A.2 6.SP.A.3 6.SP.B.5c 6.SP.B.5d MP.2 MP.4 | 6 7 | Activity | ||
The Forest Problem![]() Students want to know why they would ever use a sampling method other than a simple random sample. This lesson visually illustrates the effect of using a simple random sample (SRS) vs. a stratified random sample. Students will create a SRS from a population of apple trees and use the mean of the SRS to estimate the mean yield of the trees. Students will then create a stratified random sample from the same population to again estimate the yield of the trees. The use of the stratified random sample is to control for a known source of variation in the yield of the crop, a nearby forest. |
8/2/2016 |
Trey Cox
|
6.SP.A.1 6.SP.B.4 6.SP.B.5 7.SP.A.1 7.SP.A.2 MP.1 MP.2 MP.3 MP.4 MP.5 MP.6 MP.7 | 6 7 | Activity | ||
Valentine Marbles![]() For this task, Minitab software was used to generate 100 random samples of size 16 from a population where the probability of obtaining a success in one draw is 33.6% (Bernoulli). Given that multiple samples of the same size have been generated, students should note that there can be quite a bit of variability among the estimates from random samples and that on average, the center of the distribution of such estimates is at the actual population value and most of the estimates themselves tend to cluster around the actual population value. Although formal inference is not covered in Grade 7 standards, students may develop a sense that the results of the 100 simulations tell them what sample proportions would be expected for a sample of size 16 from a population with about successes. |
8/2/2016 |
Trey Cox
|
7.SP.A.2 MP.1 MP.2 MP.3 MP.4 MP.5 MP.6 | 7 | Activity | ||
Flintstone's Writing Project - Sampling![]() This writing project was written as a letter from Fred Flintstone to the students asking for their advice on proper sampling techniques that requires their mathematical “expertise”. This clearly defines the target audience for the paper and gives the students an idea of the mathematical background that they should assume of the reader. The plot lines in the project is a little bit goofy, although not imprecise, which helps relax the students and gives them the opportunity to be creative when writing their papers. |
8/2/2016 |
Trey Cox
|
7.SP.A.1 7.SP.A.2 MP.1 MP.2 MP.3 MP.4 MP.5 MP.6 | 7 | Activity | ||
Rule Time: Salute to Sports!The purpose of this module is to help students learn important applied mathematical concepts regarding exponential and logistic functions. Students will also learn how to graph and interpret exponential (and logistic, if desired) functions. The unique element of this lesson is the use of video to generate interest in the students and motivate the content through interactive technology, humor, and cooperative learning. Students are encouraged to work together and help each other “make sense” of the activities. You will need these video clips: Part 1 - https://www.youtube.com/watch?v=xUavijWEwaQ Part 2 (after the problem situation is resolved) - https://www.youtube.com/watch?v=GfGj7Ik7Zao |
8/2/2016 |
Trey Cox
|
HSA-CED.A.1 HSA-REI.D.11 HSF-IF.A.2 HSF-IF.B.4 HSF-IF.B.5 HSF-IF.C.7e HSF-IF.C.9 HSF-LE.A.1 HSF-LE.A.1a HSF-LE.A.2 HSF-LE.B.5 MP.1 MP.3 MP.4 MP.5 MP.6 | HS | Video | ||
Sampling Techniques - Jelly Blubbers![]() This activity introduces the Simple Random Sample (SRS) to students, and shows why this process helps to get an unbiased sample statistic. Relying on our perceptions can often be deceiving. In this exercisestudents are asked to determine the average length of a jellyblubber (a hypothetically recently discovered marine species) using a variety of techniques. The student will learn that a Simple Random Sample (SRS) is the most accurate method of determining this parameter, and that intuition can be deceptive. |
8/2/2016 |
Trey Cox
|
6.SP.A.1 6.SP.B.4 6.SP.A.2 7.SP.A.1 MP.1 MP.3 MP.4 MP.5 MP.1 MP.3 MP.4 MP.5 | 6 7 | Activity | ||
Number Systems - Binary, Decimal, and Other systems![]() Students can struggle mightily with understanding place value as they begin to add and subtract numbers and "carry" and "borrrow". This short activity can be a great way to help students understand the concept of place value. |
8/2/2016 |
Trey Cox
|
5.NBT.A.1 5.NBT.A.3 5.NBT.A.3a 5.NBT.A.3b 5.NBT.A.4 4.NBT.A.1 4.NBT.A.2 4.NBT.A.3 4.NBT.B.4 MP.2 MP.7 MP.8 MP.2 MP.7 MP.8 | 4 5 | Activity |